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Abstract

Let S be a set of n points in IR? and let ¢ > 1 be a real number. A
t-spanner for S is a graph having the points of S as its vertices such
that for any pair p, g of points there is a path between them of length
at most ¢ times the Euclidean distance between p and q.

An efficient implementation of a greedy algorithm is given that con-
structs a t-spanner having bounded degree such that the total length
of all its edges is bounded by O(logn) times the length of a minimum
spanning tree for S. The algorithm has running time O(n log? n).

Applying recent results of Das, Narasimhan and Salowe to this
t-spanner gives an O(nlog?n) time algorithm for constructing a t-
spanner having bounded degree and whose total edge length is pro-
portional to the length of a minimum spanning tree for S. Previously,
no o(n?) time algorithms were known for constructing a ¢-spanner of
bounded degree.

In the final part of the paper, an application to the problem of
distance enumeration is given.

1 Introduction

Given a set S of n points in IR? and a real number ¢ > 1, a t-spanner for S
is a graph having the points of S as its vertices such that for any pair p, ¢ of
points there is a path between them having total length at most ¢ times the
Euclidean distance between p and q.
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| degree | weight |  time | reference |

0(1) * O(n?logn) | [14, 17]

O(1) | O(wt(MST)) | O(n®logn) | [2, 4, 6]
* O(wt(MST)) | O(nlog®n) [5]

O(1) | O(wt(MST)) | O(nlog?n) | this paper

Table 1: Results for constructing a t-spanner for a set of n points in IR%. All
constant factors depend on ¢ and d. A x indicates that the quantity can be
very large.

Much research has been recently done on the problem of efficiently con-
structing spanners that satisfy additional constraints. Quantities that are of
interest are the number of edges in the spanner, the maximum degree, and
the weight, which is defined as the total length of all edges. It is clear that
each t-spanner must have at least n — 1 edges. Also, the weight must be at
least equal to the weight of a minimum spanning tree for S. We denote the
latter by wt(MST).

We give a brief overview of known results on spanner constructions. See
also Table 1.

Feder and Nisan gave a simple O(n?logn) time algorithm for constructing
spanners with bounded degree. (See [14, 17].) However, these spanners can
have a very large weight.

Chandra et al.[2] present a path greedy algorithm for constructing a span-
ner with bounded degree. Recent results of Das et al. [4, 6] prove that this
spanner has weight O(wt(MST)). The algorithm of [2] has running time
O(n3logn).

Das and Narasimhan [5] present a fast implementation of a variant of
the path greedy algorithm using graph clustering techniques that runs in
O(nlog?n) time. Again applying the results of [4, 6] shows that the resulting
spanner has weight O (wt(MST)). Its degree, however, can be very large.

In [14], it is shown that there exists a ¢ such that a ¢-spanner of degree
four can be constructed. In [3], the analogous result is proved for degree-3
spanners. Hence, there has been much interest in spanners of small degree.

In this paper, we present an O(nlog®n) time algorithm for constructing
a bounded degree spanner having weight O(wt(MST)). The importance of
this result lies in the fact that this is the first algorithm that constructs such
a spanner in o(n?) time. In fact, it is even the first o(n?) time algorithm for
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constructing a spanner of bounded degree.

A set of directed edges is said to possess the gap property if the sources
and sinks of any two edges in the set are separated by a distance at least
proportional to the length of the shorter of the two edges. Chandra et al.[2]
have shown that if the edges of a graph can be partitioned into a constant
number of subsets such that within each subset the gap property holds, then
the weight of the graph is bounded by O(wt(MST)logn) and it has bounded
degree.

The idea of the path greedy algorithm is to consider pairs of points in
order of increasing distance, adding an edge (p, ¢) if and only if the partial
spanner built until then does not already contain a path between p and ¢ of
length at most ¢ times the distance between p and ¢. It is obvious that the
resulting graph is a ¢-spanner. Additionally, Chandra et al. prove that the
edges in this spanner can be partitioned into a constant number of subsets
such that each subset satisfies the gap property. Hence, it has bounded
degree and weight O(wt(MST)logn).

In this paper we show that we can in some sense reverse the emphasis
of this greedy strategy. We consider pairs of points in order of increasing
distance, adding an edge (p,q) if and only if it does not violate the gap
property. More precisely, the edges of the partial spanner built until then
can be partitioned into a constant number of subsets such that within each
subset the gap property holds. (We call this the gap greedy strategy). It is
obvious that the resulting graph has weight O(wt(MST)logn) and bounded
degree. We are able to show that this graph is also a t-spanner.

The major advantage of the gap greedy approach is that we can give an
efficient implementation for a minor variant of it that runs in O(nlog®n)
time. One of the main ideas is that we do not have to consider the pairs
in increasing order of their exact distance. It suffices to consider them in
increasing order of their approximate distance. If an edge (p, ¢) is added to
the spanner, then several points become “forbidden” as source or destination
end points for later edges. Using range trees, we can implicitly maintain the
non-forbidden points and their approximate distances. In each iteration, we
then take a pair p, ¢ of non-forbidden points having “minimal approximate”
distance, add this pair as an edge to the graph, determine the points that
become forbidden and remove the approximate distances they induce from
the data structure.

Hence, in O(n log” n) time, we construct a spanner of bounded degree hav-
ing weight O(wt(MST)logn). By applying the results of [5] to this spanner,
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we get an O(n log® n) time algorithm for constructing a spanner of bounded
degree with weight O(wt(MST)).

In the final part of this paper we show how spanners can be used to
enumerate distances efficiently. More precisely, given the spanner that results
from our algorithm, we can enumerate the k£ smallest distances in the set S
in sorted order, in time O(n 4 klogk). The value of k need not be known
at the start of the enumeration. We show similar results for enumerating
approximate distances.

For the problem of enumerating the k£ smallest distances, the following
was known. Salowe [13] and Lenhof and Smid [9] achieve O(nlogn+ k) time
for any dimension, but in both algorithms, the value of £ must be known in
advance and the distances are not enumerated in sorted order. In the plane,
Dickerson et al.[8] show that given the Delaunay triangulation, the £ smallest
distances can be enumerated in O(n + klogk) time. In this algorithm, the
value of £ need not be known in advance and the distances are enumerated
in sorted order.

Hence our spanner can be regarded as an efficient data structure that can
be used for distance enumeration.

The rest of this paper is organized as follows. In Section 2, we define the
basic geometric notions that are used in the paper and prove the main lemmas
that we will use in order to show that a graph is a spanner. In Section 3, we
give the simple gap greedy algorithm. In Section 4, we introduce cones and
define approximate distance functions based on them. Using these, we give
a variant of the algorithm of Section 3. In Section 5, we give the efficient
implementation of this variant. Section 6 gives the application of bounded
degree spanners to the problem of distance enumeration. In Section 7, we
conclude with some remarks and open problems.

2 Preliminaries

In this section, we introduce the basic terminology and recall and prove some
facts that will be used in the rest of the paper.

Let S be a set of n points in IR®. We will consider graphs having the
points of S as their vertices. For convenience, we only consider directed
graphs. The weight of an edge (p,q) is defined as the Euclidean distance
between p and q. The weight of a path in a graph is defined as the sum of
the weights of all edges on the path. If (p,q) is an edge, then p is called its



source and q is called its sink.

The Euclidean distance between the points p and ¢ in IR is denoted by
Ipg|. We denote by |pg|o the L,-distance between p and ¢, i.e., |pg|e =
maxi<i<d ‘pi - (]z'\-

Let ¢t > 1. A graph G = (S, E) is called a t-spanner for S if for any pair
p, q of points of S there is a path in G from p to ¢ having weight at most
t times the Euclidean distance between p and ¢q. Any path satisfying this
condition is called a t-spanner path from p to q.

Remark 1 It is not a restriction to consider only directed graphs. Any
directed t-spanner can be converted into an undirected ¢-spanner by making
the edges undirected. Similarly, given an undirected t-spanner, we get a
directed t-spanner by replacing each undirected edge {p, ¢} by a pair (p,q)
and (g, p) of directed edges.

Given a t-spanner G = (S, E') and a point p of S, we define the degree of
p as the sum of its in-degree and its out-degree in G. Define the weight of a
set of edges as the sum of the weights of all its elements. The weight of a
t-spanner is the weight of its edge set.

In order to estimate the weight of a ¢-spanner, Chandra et al.[2] intro-
duced the gap property: Let w > 0. A set E of directed edges satisfies the
w-gap property if for any two edges (p, q) and (r, s) in E, we have

min(|pr}, |gs|) > w - min(|pg|, [rs),

i.e., the sources and sinks of any two edges are separated by at least w times
the weight of the shorter edge. Clearly, this implies that no two edges of E
share a source, and no two edges share a sink.

Lemma 1 (Chandra et al.[2]) Let E be a set of directed edges that satis-
fies the w-gap property. If w > 0, then no two edges share a source, and
no two edges share a sink. Further, if w > 0, then the weight of E is
O((1/w) logn) times the weight of a minimum spanning tree for S.

Let p and ¢ be points in IR?, both not equal to the origin 0, and let H be
the two-dimensional plane that contains p, ¢ and 0. (If p = ¢, then we take
for H any plane that contains p and 0.) Then the vectors Op and 0g are both
contained in H. The angle between these vectors, which is a real number in
the interval [0 : 7], is denoted by angle(p, q).
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The following lemma enables us to prove that a graph is a t-spanner.
Its proof is closely related to the proof of Lemma 4.1 in Chandra et al.[2].
Intuitively the lemma says that a graph is a spanner if for any edge e missing
from the graph there is a similarly-directed edge €’ close by (relative to the
length of ¢') with length not much greater than e.

Lemma 2 Let t, § and w be real numbers such that 0 < § < /4,0 < w <
(cos@ —sinf)/2 and t > 1/(cos@ — sin@ — 2w). Let S be a set of points in

IR and let G = (S, E) be a directed graph such that the following holds. For
any two points p and q of S there is an edge (r,s) € E, such that

1. angle(q —p,s —r) <0, |rs| < |pq|/cosf and |pr| < w|rs|,
2. or angle(p — q,r — s) <8, |rs| <|pq|/cos® and |gs| < w|rs|.

Then the graph G is a t-spanner for S.

Proof: We use induction on the rank of the interpoint distance. Let p, ¢ be
any pair of points in S. If p = ¢, then there is nothing to show. So assume
p # q. Let (r,s) be the edge guaranteed by the lemma. We will prove that
(i) |pr| < |pgl, (ii) |sq| < |pql, and (iii) there is a t-spanner path from p to q.

Assume that edge (r, s) satisfies condition 1. (The case that condition 2.
holds can be treated by a symmetric argument.) Since |rs| < |pg|/cosf and
0 < 0 < /4, we have |rs| < |pg| - v/2. Also, since w < 1/2 and |pr| < w]rs],
we have |pr| < |rs|/2. Combining this gives |pr| < |pq| - v/2/2 < |pg|, which
proves (i).

To prove (ii) and (iii) we need to consider two cases. Let [ be the ray
that emanates from 7 and that has the same direction as the vector pg. Let
v be the point on [ such that [rv| = |pg|. Note that [pr| = |vg|. Let u
be the orthogonal projection of s onto [. Let H be the two-dimensional
plane that contains the ray [ and the point s. Then the points r, s, u and
v are all contained in H. Let o be the angle between 7§ and [. Then
a = angle(q —p,s —r) <0, sina = |su|/|rs| and cos « = |ru|/|rs|. The two
cases depend on whether |ru| < |rv| or |ru| > |rv|. (See Figure 1.)

Case 1: |ru| < |rv.
To show that |sq| < [pgq|, we apply the triangle inequality and simplify:

lsq| < |su|+ |uv| 4+ |vg]
= |su| + [rv] — |ru| + |vg]



|sul + |pq| — [ru| + |pr|

|rs|sina + |pg| — |rs| cosa + w]rs|

IAINA

|rs|sinf + |pq| — |rs|cos@ + w]rs|

|pg| — |rs|(cos@ — sin @ — w). (1)

Since w < (cosf — sin @) /2, we conclude that |sq| < |pg|, which proves (ii).

Figure 1: Cases 1 and 2 in Lemma 2.

It remains to prove (iii). By the induction hypothesis, there are ¢-spanner
paths from p to r and from s to ¢g. Consider the path that starts in p, takes
the t-spanner path to r, then takes the edge to s, and finally takes the t-
spanner path from s to q. The weight W of this path is at most equal to
t|pr|+ |rs|+t|sq|. Using (1), the assumptions of condition 1. and simplifying
we get

W < tw|rs|+ |rs| + tpg| — t|rs|(cos @ — sinf — w)
= t|pg| — |rs|(t(cos @ —sin O — 2w) — 1)
< tlpql.

Hence the graph G contains a t-spanner path from p to gq.
Case 2: |ru| > |rv|.
As in Case 1, we apply the triangle inequality and simplify:

lsq| < |su| + |uv| + |vg|

= |sul + |rul — [rv] + |vg]
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|rs|sina + |rs| cosa — |pg| + [pr|

< |rs|(sin @ + cos @ + w) — |pq|
< |rs|(sinf + w) (2)
< Il (G cos¥—sinf

cos @ 2

1
§|pq|(1 + tan ).

Since 0 < # < 7/4, we have tanf < 1. Therefore, |sq| < |pq|, which proves
(ii).

As in Case 1, we prove that the path formed by combining the ¢-spanner
path from p to r, followed by the edge (r, s), followed by the ¢-spanner path
from s to g, is a t-spanner path from p to ¢. This will prove (iii) and complete
the proof of the lemma. Let W denote the weight of this path. Then W <
t|pr|+ |rs| +t|sq|. Using (2), the assumptions of condition 1. and simplifying
we get

W < tw|rs|+ |rs| + t|rs|(sinf + w)
tIpg| — tlpg| + |rs|(t(sin @ + 2w) + 1)

|

< tlpg| —t|rs| cos @ + |rs|(t(sinf + 2w) + 1)
= tlpq| — |rs|(t(cosf —sinf — 2w) — 1)
< tlpgl,

i.e., there is a t-spanner path in G from p to ¢. i

Remark 2 Given ¢t > 1, let w and 6 be assigned any values consistent
with the expressions 0 < 0 < 7/4, 0 < w < (cosf — sinf)/2 and ¢t >
1/(cos@ — sinf — 2w). The undirected spanner built by the path greedy
algorithm (see [2]) may be regarded as a directed spanner as indicated in
Remark 1. It has the following property: Given any two edges (p,q) and
(r,s) in the spanner, if the angle between them is at most #, then they
satisfy the w-gap property.

To show that this is true, assume w.l.0.g. that edge (r, s) was added first to
the spanner. Then |rs| < |pq|. For the sake of contradiction, assume that the
edges (p,q) and (7, s) do not satisfy the w-gap property. Then |pr| < w]|rs|
or |gs| < wlrs|. Assume first that |pr| < w|rs|. From the proof of Lemma 2,
we know that |pr| < |pg| and |sq| < |pg|. Consider the moment when (p, q)



is added to the spanner. Then the pairs (p,r) and (s,q) have been tested
already, so there are t-spanner paths from p to r and from s to ¢. It follows
from the proof of Lemma 2 that there must already be a ¢-spanner path from
p to ¢ and, therefore, edge (p,q) would not be added. The case |gs| < w|rs|
can be treated in a similar way.

Thus the path greedy spanner possesses the w-gap property for any pair
of edges with angle at most 6, such that w and 6 are consistent with the
above expressions.

3 A greedy algorithm

In this section, we give a simple greedy algorithm for computing a span-
ner with bounded degree and low weight. In later sections, we modify this
algorithm such that it can be implemented efficiently.

Let S be a set of n points in IR?. The following algorithm gap_greedy (S, 8, w)
constructs a spanner for S. If w > 0, then the edges of this spanner can be
partitioned into a constant number of subsets, such that within each subset
the w-gap property holds. This will guarantee that the spanner has bounded
degree and low weight.

The algorithm considers all ordered pairs (p,q) of points in increasing
order of their distances. The edge (p, ¢) is added to the graph iff there is no
edge (r,s) in the current graph such that (p,q) and (r,s) have roughly the
same direction and the sources p and r are close to each other, or (¢, p) and
(s,r) have roughly the same direction and the sources ¢ and s are close to
each other.

A formal description of our algorithm is given in Figure 2. We remark
that for w = 0, this is exactly Feder and Nisan’s algorithm. (See [14, 17].)

Lemma 3 Algorithm gap_greedy(S, 6, w) computes a t-spanner fort = 1/(cos 0—
sinf — 2w).

Proof: Consider the edge set E that is constructed by the algorithm. We
prove that this set satisfies the conditions of Lemma 2. This will prove that
the graph (S, F) is a t-spanner.

Let (p, q¢) be any ordered pair of points of S. If (p, ¢) is an edge of E, then
the conditions of Lemma 2 hold with » = p and s = ¢. Assume that (p, q) is
not contained in E. Consider the iteration where the pair (p, ¢) is inspected.
We did not add (p, ¢) to E because this set contained an edge (r, s) such that
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Algorithm gap_greedy(S, 6, w)
(* S is a set of n points in IR%, 0 < 0 < 7/4, 0 < w < (cosh — sinf)/2 *)
begin
sort the 2(’;) ordered pairs of points according to their distances (ties are broken
arbitrarily) and store them in a list L;
E = 0;
for all ordered pairs (p,q) € L (* visit pairs in sorted order *)
do add := true;
for each edge (r,s) € E
do if angle(q —p,s —r) <6
then add := add A (|pr| > w|rs|)
fi;
if angle(p —q,r —s) <0
then add := add A (|gs| > w|rs|)

fi
od;
if add = true then F:= EU{(p,q)} fi
od;
output the set F
end

Figure 2: The greedy algorithm.
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(i) angle(q—p,s—7) < 0 and |pr| < w|rs|, or (ii) angle(p —q,r —s) < 6 and
lgs| < wlrs|. Since (r,s) is contained in F at the moment when we inspect
the pair (p, q), we must have |rs| < |pg|. This proves that |rs| < |pq|/ cosb.
Hence condition 1. or 2. of Lemma 2 is satisfied. B

Lemma 4 Ifw > 0, then algorithm gap_greedy(S, 8,w) computes a spanner
of degree at most O((c/0)%1), for a suitable constant c. Further, if w > 0,
then the weight of this spanner is bounded by O((c/0)¢ 1(1/w)logn) times
the weight of a minimum spanning tree for S.

Proof: Consider any two edges (p,q) and (r,s) of the spanner (S, F) that
is constructed by the algorithm. Assume that angle(¢ — p,s —r) < 6. Then
also angle(p — q,r — s) < 0. If (r,s) was added to E before (p,q) then it
follows from our algorithm that |rs| < |pq|, [pr| > w|rs| and |gs| > w|rs|.
If (p,q) was added before (r,s), then we have |pq| < |rs|, |rp| > w|pq|
and |sq| > w|pq|. Therefore, we must have [pr| > w - min(|pq|, |rs|) and
lgs| > w - min(|pg|, |rs|), i.e., the w-gap property holds for the edges (p,q)
and (r, s).

Consider a collection of O((c/0)%1) cones having their apex at the origin,
one having angular diameter at most 6, such that the entire collection covers
IR?, for a suitable constant c. (In the next section, these notions are defined
precisely.) Number these cones Cy,Cy,...,Cy,. Define E; := {(p,q) € E :
g—p € C;}, 1 <i < m. Then for each fixed 7, the edges of F; satisfy the
w-gap property.

Lemma 1 implies that, if w > 0, no two edges of E; share a source, and no
two edges share a sink. Since the sets E;, 1 < i < m, partition E, it follows
that each point of S has degree at most 2m = O((c¢/0)¢™'). Also, if w > 0,
then Lemma 1 implies that the total weight of E; is bounded by ((1/w)logn)
times the weight of a minimum spanning tree for S. This proves that the
total weight of the spanner is bounded by ((c/#)471(1/w)logn) times the
weight of a minimum spanning tree for S. i

We briefly examine the question of what sorts of tradeoffs are possible
between the three quantities of interest for spanners, namely, the spanner
constant £, the degree, and the weight bound. For algorithm gap_greedy, we
can assign any values to 6 and w such that 0 < § < 7/4 and 0 < w <
(cos@ —sinf)/2. Assume that ¢ > 1 is given. If we want the best bound on
the degree, then we must choose the largest possible cone angle. Thus we
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must choose 6 such that ¢ = 1/(cos@ — sin#). In this case, since w = 0, the
weight bound can grow arbitrarily bad.

More interesting is the case of how to choose # and w to achieve the
best weight bound. Assume that we want a (1 + €)-spanner where € is a
small constant. We saw in Lemma 4 that for w > 0, the spanner produced
by algorithm gap_greedy(S, 8, w) has weight O((c/8)%(1/w)logn) times the
weight of a minimum spanning tree for S. Hence, in order to minimize the
weight, we have to maximize % *w. Since t = 1+ ¢ = 1/(cos —sin § — 2w),
we get

1 1
wz—(cosH—sinH— )
2 1+e¢

If € is small, then # will also be small, and we can approximate the expression
for w by

w o~ S0 (1-0)
~ %(6—0).

Therefore, we have to maximize #% (¢ — #). Differentiating and equating
to zero we find that this expression is maximum for § = (1 — 1/d)e. This
gives w = €/(2d). The corresponding (1 + €)-spanner has a weight that is
bounded by C' - logn times the weight of a minimum spanning tree for S,
where

d_l%(l - 1/d)1_d61_d> = O0(dc* e ).
€

C=0((c/0)*'(1/w)) =0 <c
Since algorithm gap_greedy inspects all pairs (p, ¢) of points explicitly, its
running time is Q(n?). In the next section, we modify the algorithm. As we

will see, the modified version can be implemented such that its running time
is bounded by O(nlog?n).

4 Towards an efficient implementation

We start by introducing the notion of cones. A (simplicial) cone is the
intersection of d halfspaces in IR?. The intersection of the hyperplanes that
bound these halfspaces is called the apex of the cone. We always assume that
a cone is closed and that its apex is a point. In the plane, a cone having its
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apex at the point p is a wedge bounded by two rays emanating from p that
make an angle at most equal to 7.

Let C' be any cone in IR? having its apex at the point p. The angular
diameter of C is defined as the maximum value of angle(q — p,r — p), where
¢ and r range over all points of C N IRY. For d = 2, this is exactly the angle
between the two rays that form the boundary of C.

Let 6 be a fixed real number such that 0 < § < w/4. Let C be a collection
of cones such that

1. each cone has its apex at the origin,
2. each cone has angular diameter at most 6,
3. all cones cover IR%.

In [18], it is shown how such a collection C, consisting of O((c/6)%"!) cones
for a suitable constant ¢, can be obtained. In the plane and for § = 7 /k, we
just rotate the positive z-axis over angles of 7 -0, 0 < ¢ < 2k. This gives 2k
rays. Each wedge between two successive rays defines one cone of C.

For each cone C' € C, let [ be a fixed ray that emanates from the origin
and that is contained in C.

After having introduced the terminology, we can modify algorithm gap_greedy.
There are three major modifications. Consider again the formal description
of the algorithm. First, we replace the condition “angle(q — p,s —r) < 6”
by “g— p and s — r are contained in the same cone of C”. Clearly, the latter
condition implies the first one.

Second, we replace the condition “|pr| > w|rs|” by “|pr|e > (w/v/d)|rs|”,
i.e., for the pair p, r, we switch from the Euclidean metric to the L,-metric.
Note that all points r for which |pr|,, < ¢ are contained in the d-dimensional
axes-parallel cube centered at p having sides of length 26. Using range trees,
we can find such points r efficiently. (Finding all points r such that |pr| < ¢’
takes much more time.)

Third, instead of inspecting all pairs in increasing order of their distances,
we inspect them in order of their approzrimate distances, to be defined below.
As we will see, in this way we do not have to inspect all pairs explicitly.

Let C be any cone of C and let p and ¢ be two points in IR%. Let Cp =
C+p:={z+p:z € C},ie., C,is the cone obtained by translating C such
that its apex is at p. Similarly, let ¢ := lc + p. Then we define
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Euclidean distance between p and
dc(p,q) == { the orthogonal projection of ¢ onto lc, if g € C,
00 if ¢ & Cp.

lC,p

Figure 3: The approximate distance d¢(p, q).

See Figure 3. Note that dc is not a metric. The following lemma says
that dc(p, q) is a good approximation for the Euclidean distance between p
and ¢, if ¢ € C,,.

Lemma 5 Let p and g be points in IR*. If ¢ € C,, then |pg|cosf <
dc(p: q) < |pl.

Proof: Assume that ¢ € C,. Let H be the two-dimensional plane that
contains the point ¢ and the ray [c,. Note that H contains the vector P
Let a be the angle between I, and pg. (See Figure 3.) Then, 0 < a < 6 and
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cosa. = 0¢(p, q)/|pq|- Hence, dc(p, q) = |pg|cosa > [pg|cos@ and d¢(p, q) =
Ipg| cosa < |pgl|. W

Now we can give the modified algorithm. For each fixed cone C, we
compute a set F¢ of edges (p, g) such that ¢ —p € C. The union of all these
sets will form the edge set of our final spanner.

Consider a cone C. We find the pair (r,s) of distinct points for which
dc(r,s) is minimal and add the edge (r,s) to Ec. Having added the edge
(r,s), we do not want to add edges (p, ¢) such that ¢—p € C and the distance
between p and r is small. That is, after having added (r, s), all points p that
are “close” to r should not occur as sources of edges that are added later.
Similarly, after having added the edge (r, s), all points ¢ that are “close” to
s should not occur as sinks of edges that are added later.

That is, the addition of the edge (7, s) causes certain points to become
“forbidden” as a source or a sink.

In the next iteration, we find the pair (', s") of non-forbidden points for
which d¢(r', s') is minimal and proceed in the same way.

The formal algorithm is given in Figure 4. Consider the while-loop of this
algorithm. If the edge (r, s) is added to E¢, then the value of dist(r, s) is set
to oo during the same iteration of this loop. That is, during each iteration,
the number of pairs p, ¢ for which dist(p,q) < oo strictly decreases. This
proves that the while-loop terminates.

Lemma 6 Algorithm gap_greedy' (S, 0, w) computes a t-spanner fort = 1/(cos—
sinf — 2w).

Proof: The proof is similar to that of Lemma 3. Consider the set E of edges
that is computed by the algorithm. Let (p,¢) be any ordered pair of points
of S. If (p,q) € E, then the conditions of Lemma 2 hold. So, assume that
(p, q) is not contained in E. Let C' be a cone such that ¢ € C,. Consider
the iteration during which the edge set E¢ is constructed. At the start of
this iteration, dist(p, ¢) has a finite value. Since the edge (p, ¢) is not added
to E¢, the value of dist(p,q) changes to oo during some iteration of the
while-loop. Let (r, s) be the edge that is added to E¢ during that iteration.
At the start of it, we have dist(r,s) < dist(p,q) < oo, dist(r,s) = dc(r, s)
and dist(p, q) = d¢(p, ). Moreover, we have |pr|s < (w/vd)|rs| or |gs|s <
(w/+/d)|rs|. We consider these two cases separately.

Case 1: |pr|o < (w/V/d)|rs|.
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Algorithm gap_greedy' (S, 0, w)
(* S is a set of n points in IR 0 < @ < 7/4, 0 < w < (cos — sin ) /2 *)
begin
for each cone C
do for each r € S and s € S do dist(r, s) := d¢c(r, s) od;
Ec = (Z);
while there are r # s such that dist(r,s) < oo
do choose r # s such that dist(r, s) is minimal;
E¢:= EcU{(r,s)};
for each p € S such that [pr|s < (w/Vd)|rs|
do for each g € S do dist(p,q) := o0 od
od;
for each ¢ € S such that |gs|e < (w/Vd)|rs]
do for each p € S do dist(p, q) := 0o od
od
od
od;
output the set F := U E¢o
end

Figure 4: Towards an efficient implementation of the greedy algorithm.
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Then, |pr| < Vd - |prlos < w|rs|. Since s —r and ¢ — p are both
contained in C, we have angle(q — p,s — r) < 6. By Lemma 5, we have
Irs| < d¢(r,s)/cosf and dc(p,q) < |pg|. Since dc(r,s) < dc(p, q), we con-
clude that |rs| < |pq|/ cosf. Hence, condition 1. of Lemma 2 holds for the
pair (p, q).

Case 2: [¢5|oo < (w/V/d)|rs].

It follows in the same way as in Case 1 that |gs| < w|rs|, angle(p —q,r —
s) < 0 and |rs| < |pq|/ cosf. Hence, condition 2. of Lemma 2 holds for the
pair (p, q).

To summarize, we have shown that for each pair (p,q) of points one of
the conditions of Lemma 2 is satisfied. This proves that the graph (S, E) is
a t-spanner. i

Lemma 7 Ifw > 0, then algorithm gap_greedy' (S, 0, w) computes a spanner
of degree at most O((c/0)%™1), for a suitable constant c. Further, if w > 0,
then the weight of this spanner is bounded by O((c/0)¢'(1/w)logn) times
the weight of a minimum spanning tree for S.

Proof: Consider any cone C. We will prove that the edges of E¢ satisfy the
(w/+/d)-gap property. Then, the claim follows from Lemma 1.

Consider any two edges (p, ¢) and (r, s) of E¢. Assume w.l.o.g. that (r,s)
was added to F¢ before (p, ¢). Then we must have |pr|s > (w/v/d)|rs| and
¢8| > (w/V/d)|rs|. (Otherwise, the algorithm would have set dist(p, q) :=
oo. Therefore, the pair (p,q) would never have been chosen as a pair with
minimal and finite dist(-,-)-value and, hence, the edge (p,q) would never
have been added to E¢.) But this implies that

[pr| > |prloe > (w/Vd)lrs| > (w/Vd) - min(|pg, |rs]),

and
lgs| > |gs]ee > (w/Vd)|rs| > (w/v/d) - min(|pg], |rs]),

i.e., the (w/v/d)-gap property holds. W

5 An efficient implementation

In this section, we show how to implement algorithm gap_greedy’ such that its
running time is bounded by O(nlog?n). The main idea is to use range trees
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(see [11]) for maintaining the minimal value dist(r, s) for all “non-forbidden”
points r and s. The technique is related to the ones in [7, 16] for maintaining
the closest pair or k-point cluster in a dynamically changing set of points.

Let C' be any cone of C. Recall that C' is the intersection of d halfspaces.
Let hy, hs, ..., hgy be the hyperplanes that bound these halfspaces, and let
H,, H,y, ..., Hy be lines through the origin such that H; is orthogonal to A;,
1 <7 < d. We give the line H; a direction such that the cone C is “above”
h;. Let L be the line that contains the ray [o. We give L the same direction
as lc. (See Figure 5.)

Figure 5: The directed lines H;, H, and L, and the translated cone C,.

Let p be any point in IR?. We write the coordinates of p w.r.t. the
standard coordinate axes as p1, po, ..., pq. For 1 < i < d, we denote by p; the
signed Euclidean distance between the origin and the orthogonal projection
of p onto H;, where the sign is positive or negative according to whether this
projection is to the “right” or “left” of the origin. Similarly, p;,, denotes the
signed Euclidean distance between the origin and the orthogonal projection
of p onto L.

In this way, we can write the cone C as C = {x €¢ R% : 2} > 0,1 < i < d}.
For p € IR, we can write the translated cone C, with apex p as

C,={reR*: 2, >pl,1<i<d}.

18
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We define —C), := —C' +p:={—z +p: 2 € C}. Then we have
—C,={zeR¥: 2} <pj,1<i<d}.
If ¢ € Cp, then we have dc(p, q) = ¢11 — Pigyr-

Let S be a set of n points in IRY. During our algorithm we will maintain
a data structure having the form of a (d + 1)-layered range tree. This data
structure depends on the cone C. We describe it in detail.

There is a balanced binary search tree storing the points of S in its leaves,
sorted by their pj-coordinates. (Points with equal p}-coordinates are stored
in lexicographical order.) Let v be any node of this tree and let S, be the
subset of S that is stored in the subtree of v. Then v contains a pointer to
the root of a balanced binary search tree storing the points of S, in its leaves,
sorted by their ph-coordinates. (Points with equal p)-coordinates are stored
such that the points (p), ..., p)) are in lexicographical order.) Any node w
of this tree contains a pointer to the root of a balanced binary search tree
storing the points of w’s subtree in its leaves, sorted by their pj-coordinates,
etc. At the d-th layer, there is a balanced binary search tree storing a subset
of S in its leaves, sorted by their p/-coordinates. The binary tree that stores
points sorted by their pi-coordinates is called a layer-i tree.

Before we can define the last layer of the data structure, we need to
introduce some notation. Let u be any node of a layer-d tree. We inductively
define a sequence ug, ug_1, - - -, u; of nodes such that u; belongs to a layer-i
tree: Define uy, = u. Given u;, walk to the root r of its layer-i tree. Then
u; 1 is the node of the layer-(i — 1) tree that contains a pointer ro 7. (See
Figure 6.)

For 1 < < d, let z],; be the maximal p}-coordinate that is stored in the
left subtree of node u;. Let x, be the point with coordinates x}, z.,, ...,z -
(Note that these coordinates are w.r.t. the “axes” Hy, Ho, ..., Hy. In general,
x, is not a point of S.)

Now we can define the (d + 1)-st layer of the data structure. Consider
again any node u of a layer-d tree. Let S,; be the subset of S that is
stored in the subtree of u. Consider the point z,. Let S, be a subset of
{p € Sua 1 p; > 7,1 <1< d} and let S, ; be a subset of {p € Sy : p <
;1 < i < d}. (The algorithm determines the sets Sy ;. and S, 4,,. For
the description of the data structure, we assume that they are any subsets.)
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Figure 6: Illustration of the (d + 1)-layered data structure for d = 2. The
points in the cone Cy, belong to the set S, 3; those in the cone —C,, belong
t0 S,.3-

Note that all points of S;\;,, and S, are contained in the cones Cy, and
—C,,, respectively.
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Node u of the layer-d tree contains pointers to
1. alist L’l—i—,d-f-l storing the points of S;L’dﬂ, sorted by their pj;_,-coordinates,
2. alist L, ;. storing the points of S, ;. ,, sorted by their Pyy1-coordinates,

3. a variable 7441 (u) having value
Nay1(w) = min{dc(p,q) 1 p € Sy 41,9 € Sy a1}

4. and, in case, Ng41(u) < 0o, a pair of points that realizes 14,1 (u).

These two lists are called layer-(d+ 1) lists. If S, 4, or Sy 4., is empty, then
na+1(u) = co. (In particular, this is true if u is a leaf.) Otherwise, we have
Na+1(u) = 6c(p, ¢) = ¢441 — P}y, where p and ¢ are the maximal and minimal
elements that are stored in the lists L, 4., and L}, ,, respectively.

During our algorithm, the layer-i trees for 1 < 7 < d do not change,
except for certain n-variables that are defined below. For each node u of
a layer-d tree, the corresponding layer-(d + 1) lists initially store the sets
{p € Sua:p;>1xl,;,1<i<d}and {p € Sya: P < 2;,1 <i < d}. During
the algorithm, elements will be deleted from these lists.

In order to speed up searching during the algorithm, we store all points

of S in a dictionary. With each point p, we store

1. a list of pointers to the positions of the occurrences of p in all lists
Ly 441, and

2. a list of pointers to the positions of the occurrences of p in all lists

wydt1-

We are almost done with the description of the data structure. We saw
that for each layer-(d + 1) structure there is a corresponding 7, 1-value. Let
1 <4 < d and let v be any node of a layer-i tree. If v is a leaf then v stores
a variable 7;(v) having value co. If v is not a leaf, then let v; and v, be the
left and right sons of v, respectively. Also, let 7;,1(v) be the variable that is

stored with the layer-(i 4+ 1) structure that corresponds to v. Then node v
stores a variable 7;(v) having value

n:(v) = min(n;(v1), mi(vr), mig1(v)), (3)
and, in case 7;(v) < 0o, a pair of points that realizes 7;(v).

21



This concludes the description of our (d+1)-layered data structure. Recall
that the entire structure depends on the cone C.

Let ¢ be any point of S. We can delete ¢ from all lists L ;,, in which it
occurs and update the entire data structure, as follows: Search for ¢ in the
dictionary, and follow the pointers to the positions of all occurrences of ¢ in
the lists L:;d +1- For each such u, do the following:

1. Delete ¢ from L;;dﬂ. If the list L, ,., is empty, then we are done.
Otherwise, let p be the maximal element of L, ,.;. Go to 2.

2. If ¢ was not the minimal element of L7 ,,,, then we are done. If ¢ was

the only element in its list, then we set 7441(u) := oco. Otherwise, if
q was not the only element in its list, then let » be the new minimal
element of L7, . Then, set 1441(u) := dc(p,7) = 7y, — Py, and

store the pair (p,r).

Now, all layer-(d + 1) structures are updated correctly. To update the rest of
the data structure, we do the following: We search for ¢ in the layer-1 tree.
For each node on the path, we search for ¢ in the corresponding layer-2 tree,
etc., until we have located ¢ in all layer-d trees that contain this point. Then
we walk back along all these paths. During the walk, we update the values
n;(-) according to (3).

It is easy to see that the entire operation can be performed in time
O(log?n). In a completely symmetric way, we can delete a point p from
all lists L, ;,; and update the entire data structure.

Now we can give the efficient implementation of algorithm gap_greedy’.
As before, we consider all cones separately. If C is the current cone, then
we maintain besides the above (d 4 1)-layered data structure two d-layered
range trees storing subsets of S according to their standard coordinates
P1,P2,--.,pq- Recall that such a range tree can be used to find all points
that are contained in a d-dimensional rectangle having sides that are parallel
to the standard axes. A complete description of the algorithm is given in
Figure 7.

Lemma 8 Consider the iteration for the cone C. During the erecution of
this iteration, if n < oo, then

n= min{éc(Pa Q) -p € RTsourcea q € RT;inkap 7é Q}
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Algorithm gap_greedy” (S, 0, w)
(* S is a set of n points in IR% 0 < 6 < 7/4, 0 < w < (cosh — sinf)/2 *)
begin
for each cone C
do store the points of S in the (d + 1)-layered data structure 7" defined above;
the two layer-(d + 1) lists of each node u of each layer-d tree of T store
the sets S, 4,1 = {pP € Sua: p; < 7,1 <4 < d} and
Suarr = {p € Sua 1 1§ 2 2,1 < i < dy
store the points of S in two d-layered range trees RT,ure and RTyn
according to their standard coordinates;
Ec = (Z);
71 := value stored with the root of the layer-1 tree of T7;
while 1 < oo
do let (7, s) be a pair such that n = d¢(r, s);
Ec:= EcU{(r,s)};
for each p € RT;,uree such that |pr|, < (w/\/a)\rs\
do delete p from RT,,yrce;
delete p from all lists L, ;,,, and update 7" and
1 as described in the text
od;
for each ¢ € RT,,; such that |gs|s < (w/Vd)|rs|
do delete g from RT,;,;;
delete ¢ from all lists L;r,dﬂ, and update 7" and
n as described in the text
od
od
od;
output the set £ := Jqo E¢
end

Figure 7: The efficient implementation of the greedy algorithm.
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Proof: Since all 7;-variables, 1 < i < d + 1, either have value oo or d¢(p, q)
for some p € RT,puree and q € RT,;,, it is clear that

n > min{dc(p,q) : p € RTvource, 4 € RTyink, # q}- (4)

If RT,purce Or R1,y: is empty, then n = oo, which is a contradiction to our
assumption that 7 < oo. Hence, both these structures are non-empty. Let
r € RT,puree and s € RT,;,r such that

50(7" S) - min{éc’(p: q) p € RTsourceaq € RTsmk,p 7é Q}

If we can show that there is a node u in some layer-d tree of 7" such that
Na+1(u) = dc(r, s), then we must have

n < min{dc(p,q) : p € RTsource, ¢ € RTsink, P # q}-

This will prove the lemma.

Consider the layer-1 tree of T'. Let u; be the highest node in this binary
tree such that r and s are contained in different subtrees of u;. Let 1 <7 < d
and assume that wuq, ug,...,u;_1 have been defined already, and that u;_; is
a node of a layer-(i — 1) tree. Then, let u; be the highest node in the layer-:
tree that corresponds to u;_1 such that r and s are contained in different
subtrees of u;. In this way, we get a sequence of nodes uy, us,...,uq such
that

e u, is a node of the layer-1 tree of T,
e u; is a node of the layer-i tree that corresponds to u;_1, 1 <1 < d,
e 7 and s are contained in different subtrees of u;, 1 <17 < d.

We claim that 7g41(ug) = d¢(r, s), which will complete the proof.

Let u = u4 and consider the point x, as defined in the description of 7.
(The nodes ug, ug_1,--.,u; defined in the description of T are exactly the
nodes that we just defined. The difference is that they are defined in the
reversed order.) Since 1 < oo, (4) implies that d¢(r, s) < co. Hence s € C,.
This shows that s, > 7} for 1 <7 < d. Since r and s are in different subtrees
of u;, we know that z;; separates the coordinates r; and s;. Therefore, we
must have r; < z;, < s} for 1 < i < d. Since r € RT;puree and s € RTyp, it
follows that 7 and s are contained in the lists L, 4,, and L ;,, respectively.
But then, since d¢(r, s) is minimal, we must have 7441 (u) = dc(r,s). B
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We now prove that algorithms gap_greedy’ and gap_greedy” compute the
same graph (S, E). Assume for the sake of analysis, that we run both algo-
rithms in parallel. Consider a cone C'. After the initialization of the iteration
for C, we have

{dist(r,s) :r € S,s € S,r # s,dist(r,s) < o0} =
{6C(T7 8) HEANS RT’sourcea s € Rfrsinkalr 7é S, 5(}(71, 5) < OO} (5)

Consider one iteration of the while-loop of both algorithms and assume that
(5) holds at the beginning of these iterations. Algorithm gap_greedy’ takes
a pair (r',s") for which dist(r’,s') is a minimal element in the set on the
left-hand side. By Lemma 8, algorithm gap_greedy” takes a pair (r”,s")
for which 6c(r", s") is a minimal element in the set on the right-hand side.
Hence we have dist(r',s') = 0c(r”, s"). Note that the sets in (5) may have
several minimal elements. In that case, we force algorithm gap_greedy’ to
choose the same pair as gap_greedy”. We denote the chosen pair by (r, s).
Both algorithms add the edge (r, s) to their edge sets E¢. Then gap_greedy'
updates certain dist-values and gap_greedy” updates the structures RT;ource,
RTini and T. By comparing the algorithms, it follows immediately that (5)
still holds after the iteration.

This proves that algorithms gap_greedy’ and gap_greedy” compute the
same edge set E. We proved in Lemmas 6 and 7 that gap_greedy’ always
produces a t-spanner of bounded degree and, if w > 0, its weight is at most
O(logn) times the weight of a minimum spanning tree for S. Hence, the
same is true for algorithm gap_greedy”.

We analyze the complexity of our algorithm. Consider one cone C. The
(d + 1)-layered structure T has size O(nlog?n) and can be built in time
O(nlog®n). The structures RT ue and RT,,y have size O(nlog? ' n) and
can be built in time O(nlog? ' n). By applying dynamic fractional cascading
([10]) and observing that we only delete points, their amortized deletion time
is bounded by O(log? ' n), and their query time is bounded by O(log® ' n)
plus the number of reported points. Since each point of S is reported in at
most one query for each RT-structure, the total query time is bounded by
O(nlog™ ' n).

Consider one point p of S. It is deleted at most once from RT;yyce, taking
O(log* ! n) amortized time. If it is deleted from RT,yyce, then we delete p
from all lists L, ;,, and update T" and 7. We saw already that this takes

O(log?n) time.
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Hence for each point p of S, we spend O(logd n) time for updating RT;,urce
and 7. The same bound holds for updating RT,, and T'. It follows that the
entire algorithm has running time O(nlog®n). This proves:

Theorem 1 Let t, 0 and w be real numbers such that 0 < 6 < w/4, 0 <
w < (cos® —sinh)/2 and t > 1/(cos@ — sin@ — 2w). Let S be a set of n
points in IR®. In O((c/0)* 'nlog?n) time and using O((c/0)? 'n+ nlog®n)
space, algorithm gap_greedy” (S, 0,w) computes a t-spanner for S such that
each point of S has degree at most O((c/0)%1), for some suitable constant c.
If w > 0, then the weight of this t-spanner is at most O((c/0)* 1(1/w)logn)
times the weight of a minimum spanning tree for S.

Corollary 1 Let t and 0 be real numbers such that 0 < 6 < w/4 and t >
1/(cos® — sin®). Let S be a set of n points in IR®. In O((c/0)* 'nlog®n)
time and using O((c/0)* 'n+nlog?n) space, we can compute a t-spanner for
S such that each point of S has degree at most O((c/0)* ') and the weight of
this t-spanner is at most a constant times the weight of a minimum spanning
tree for S.

Proof: Let 0 be such that 0 < 6 < 7/4 and v/t > 1/(cos#' —sin#'). Let G
be the v/t-spanner that is constructed by algorithm gap_greedy” (S, #’,0). Das
and Narasimhan [5] show how to compute in O(nlog®n) time a v/#-spanner
G' of G. Clearly, G' is a t-spanner for S. Also, since G' is a subgraph of
G, it has bounded degree. Das and Narasimhan partition the edges of G’
into two sets Ey and E;. The total weight of the edges in Fj is bounded by
the weight of a minimum spanning tree for S. The edges in F; satisfy the
so-called leap-frog property. Recent results of [4, 6] show that the leap-frog
property implies that the total weight of the edges in F; is proportional to
the weight of a minimum spanning tree for S. W

6 Application to distance enumeration

Salowe ([12, 15]) has suggested the use of Dijkstra’s algorithm with bounded
degree spanners for interdistance enumeration. Let S be a set of n points in
IR¢ and let k£ be an integer between 1 and (g) Then we want to enumerate
the k smallest distances, sorted in non-decreasing order. The value of k¥ may
or may not be known in advance.
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In Section 6.1, we show that we can use any bounded degree spanner to
enumerate the k£ smallest interpoint distances approzimately in O(n+klogk)
time, not including the time to construct the spanner. In Section 6.2, we show
that we can also do exact enumerations using any bounded degree spanner
in O((n + k)logn) time. Finally, in Section 6.3, we show how to improve
the time bound for exact enumeration to O(n + klog k) by exploiting special
properties of the bounded degree spanner constructed in this paper.

6.1 Approximate interdistance enumeration

Let G = (S, FE) be any t-spanner for S having bounded degree. Although we
describe our algorithm for an undirected spanner, the enumeration technique
can also be used on a directed spanner of bounded out-degree. Let p and ¢ be
two points of S. The weight of this pair is defined as the Euclidean distance
between p and ¢, and its pseudo-weight is defined as the Euclidean length of
a shortest path in G between p and gq.

The algorithm for approximate distance enumeration is similar to that
of Dickerson et al.[8]. We initialize a priority queue with all pairs of points
corresponding to the edges of G, with priority given by the pseudo-weight
of the pair. In each iteration, we extract the pair p, ¢ with smallest priority
and report it together with its weight. For each edge (g, 7) of G, we compute
the priority of the pair p,r as the sum of the priority of the pair p, ¢ and the
weight of the edge (g,7). We insert the pair p,r into the priority queue if it
has not already been reported and if it is not already in the queue with a
smaller priority. We do the symmetrical thing with all edges (p, s) of G.

It is easy to see that this algorithm is running Dijkstra’s shortest path
algorithm simultaneously from all the points of S and that the pairs are
reported in order of non-decreasing pseudo-weight. Our claim is that this
implies that the pairs are reported approximately in order of non-decreasing
weight. We make this precise in the following lemma.

Lemma 9 Consider the t-spanner G = (S, E). Arrange all pairs of points
in order of non-decreasing weight and assign an index to each pair based
on its rank in this sequence. Let w; and w) denote the weight and pseudo-
weight of the pair with index i, respectively. Let w be a permutation of the
pairs that orders them on the basis of non-decreasing pseudo-weight, i.e.,
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Wiy < Whigy < Whgy < ... Then for any i, 1 <i < (g),

w;

7 < Wa() < tw; (6)
and

w; < w;(i) < tw;. (7)

Proof: It follows from the definition of a t-spanner that for any ¢

w; < w; < tw. (8)

First we show that (7) and (8) together imply (6). Applying (8) with 7 (%),
we see that wg;) < w;(i). By (7), w;(i) < tw;. Hence, wy(;y < tw;, which
proves the right inequality of (6). Again applying (8) with 7 (i), we get
Wa(i) > Wy /t, which by (7) is at least equal to w;/t. This proves the left
inequality of (6).

Thus it remains to prove (7). We first show that w; < wy). There
are two cases to consider. First assume that (i) > i. Then Wr(s) = Wi
Using (8) with 7(7), this implies the desired result. Next assume that (i) <
1. Since 7 is a one-to-one function, there is a 7, 1 < j < 1, such that
7(7) > i. (Otherwise, all values 7 (1), 7(2),...,7 (i) would belong to the set
{1,2,...,4—1}.) Since j < i, we have w ;) < wy. Also, since 7(j) > 4,
we have wq(jy > w;. Applying (8) with 7(j), we see that w] ;) > wr().
Combining these inequalities, we get w; < wg(;) < w;r(j) < w;(i), which is the
desired result.

To show that w; ;) < tw;, we again consider two cases. First assume that
m(1) < 4. Then wri < wi. Applying (8) with 7 (i) gives wi ;) < twq().
Hence, w; ;) < tw;. Next assume that m(i) > 4. Since 7 is a one-to-one
function, there is a j, j > i, such that 7(j) < i. (Otherwise, all values (1),
i<l< (g), would belong to the set {i+ 1,71+ 2,..., (g)}) Since j > i, we
have wy ;) > wy . Also, since 7(j) < ¢, we have wq(;) < w;. Applying (8)
with 7(j), we see that w;r(j) < twe(;). It follows that w;r(i) < w;r(j) < twg) <
tw;. This completes the proof. B

The algorithm described above reports the sequence

Wr (1), Wr(2)5 - -+ » Wr(k)-

The right inequality in (6) implies that this sequence approximates the true
k smallest distances.
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We estimate the running time of the algorithm. Assume that k is known
in advance. To improve the efficiency of the priority queue, we maintain
only k pairs in it. The time to initialize the priority queue is O(n). Since
the spanner G has bounded degree, the queue is updated O(k) times. Each
operation on the priority queue takes O(logk) time. Therefore, the total
running time is bounded by O(n + klogk).

If £ is not known, then we proceed as follows: First, we initialize the
priority queue with the O(n) pairs that correspond to the edges of G. Then
we take an initial constant value ky and run the above algorithm. If we have
reported kg pairs, then we undo all operations we performed so far, i.e., until
we have our initial priority queue again, and repeat the same procedure with
value 2ky. We keep on doing this until we have reported £ pairs. The running
time of this algorithm is bounded by O(n+ Y50 k/2'logk) = O(n+ klogk).

6.2 Exact interdistance enumeration

Consider again an arbitrary undirected t-spanner G = (S, E) of bounded
degree. (Again, the enumeration technique can also be used on a directed
spanner of bounded out-degree.) We can enumerate the k£ exact smallest
distances, using basically the same algorithm as in Section 6.1. There are
two differences. First, the priority queue is maintained at full size, i.e., we
do not prune it to keep only k pairs. Second, we do not immediately report
the pairs as they are extracted from the queue; instead we keep track of
the k£ closest pairs seen so far. We continue to run the algorithm until the
pseudo-weight of the pair extracted from the queue is larger than ¢ times the
weight of the k-th closest pair seen so far. At termination the k closest pairs
seen by the algorithm are reported.

We prove the correctness of this algorithm. Let x be the weight of the
k-th closest pair reported by the algorithm. We claim that any pair not seen
by the algorithm has weight at least equal to z. This will prove that the
algorithm correctly reports the k closest pairs of S.

Since pairs are enumerated in order of non-decreasing pseudo-weight, any
pair not seen by the algorithm must have pseudo-weight at least equal to tx.
Using the notation of Lemma 9, let ¢ be the index of such a pair. Then
w; > tx. Then (8) implies that w; > wi/t > x, which establishes the
correctness of the algorithm.

Before we analyze the running time of the algorithm, we prove the fol-
lowing claim: The algorithm terminates as soon as it extracts a pair from
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the queue with index 7 such that w; > twy. (Note that during its execution,
the algorithm does not know wy.)

To prove this, consider such a pair with index i. Note that w; > w;,
which implies that w] > twg. Since the algorithm extracts pairs in order
of non-decreasing pseudo-weight, it must already have extracted all pairs
with pseudo-weight at most equal to twy. It follows from (8) that if a pair
has weight at most wy, then it has pseudo-weight at most twy. Thus, all
pairs with weight at most wj have been extracted already. Therefore, at the
moment when the pair with index 7 is extracted, wy is the weight of the k-th
closest pair seen so far. Hence, the algorithm terminates at this moment,
proving the claim.

Now we estimate the running time. The number of pairs extracted from
the queue is at most equal to the number of pairs having weight at most
twg. In [9, 13], it is shown that the latter is bounded by O(n + k). Hence,
after initializing the queue, which takes O(n) time, the algorithm performs
O(n + k) queue operations. (This follows from the fact that the spanner G
has bounded degree.) Since each queue operation takes O(logn) time, the
entire running time is bounded by O((n + k) logn).

6.3 Improved solution for exact interdistance enumer-
ation

We can improve the time bound of Section 6.2 by using the bounded degree
spanner that is constructed by algorithm gap_greedy” (S, 0, w) for 0 < 6 < 7 /4
and w = 0. To enumerate the k exact closest pairs, we run the same algorithm
as in Section 6.1, with one change: The priority of a pair of points is given
by its weight.

The running time of this algorithm is clearly the same as that of Sec-
tion 6.1: it is bounded by O(n + klogk). We give an inductive proof that
the algorithm outputs the & closest pairs in order of non-decreasing weight.

Consider the closest pair p, g in S. Since p and ¢ are connected by an edge
in the spanner, this pair is put into the priority queue in the initialization
step. Hence, it is the first pair to be reported.

Let 1 < m < k, and assume that the m — 1 closest pairs have been
reported by the algorithm. Let p, ¢ be the m-th closest pair in S. We show
that this pair is the next one to be reported. If p and ¢ are connected by
an edge in the spanner, then we are done, because then this pair was put
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into the queue in the initialization step. Hence, now this pair has smallest
priority in the queue, and it will be reported.

Assume that p and ¢ are not connected by an edge. Then it follows from
the proof of Lemma 2 that (i) there is a point s € S such that (p,s) is an
edge and |sq| < |[pg|, or (ii) there is a point r € S such that (¢,r) is an
edge and |pr| < |pg|. Assume first that (i) holds. Then s, ¢ must be one of
the m — 1 closest pairs. At the moment when this pair was reported, the
algorithm inserted the pair p, ¢ into the queue. Hence, after m — 1 pairs have
been reported, the pair p, ¢ has minimal priority in the queue. Hence, it is
the next pair to be reported. Case (ii) can be treated similarly.

7 Concluding remarks

We have given an O(nlog®n) time algorithm that constructs a t-spanner
of bounded degree having a weight that is proportional to the weight of a
minimum spanning tree for the n points.

After the first version of this paper was written, the authors, together
with Das, Mount, and Salowe, gave an O(nlogn) time algorithm—that is
based on completely different techniques—to construct a bounded degree
spanner having weight proportional to the weight of a minimum spanning
tree. See [1].
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