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1 PROBLEM DEFINITION

Given a geometric graph in d-dimensional space, it is useful to preprocess it so that distance queries,
exact or approximate, can be answered efficiently. Algorithms that can report distance queries in
constant time are also referred to as “distance oracles”. With unlimited preprocessing time and
space, it is clear that exact distance oracles can be easily designed. This entry sheds light on the
design of approximate distance oracles with limited preprocessing time and space for the family of
geometric graphs with constant dilation.

Notation and Definitions If p and q are points in Rd, then we use the notation |pq| to denote
the Euclidean distance between p and q; we use the notation δG(p, q) to denote the Euclidean length
of a shortest path between p and q in a geometric network G. Given a constant t > 1, a graph
G with vertex set S is a t-spanner for S if δG(p, q) ≤ t|pq| for any two points p and q of S. A
t-spanner network is said to have dilation (or stretch factor) t. We also define a (1+ε)-approximate
shortest path between p and q to be any path in G between p and q having length ∆, where
δG(p, q) ≤ ∆ ≤ (1 + ε)δG(p, q). For a comprehensive overview of geometric spanners, see the book
by Narasimhan and Smid [23].

All networks considered in this entry are simple and undirected. The model of computation used
is the traditional algebraic computation tree model with the added power of indirect addressing. In
particular, the algorithms presented here do not use the non-algebraic floor function as a unit-time
operation. The problem is formalized below.

Problem 1 (Distance Oracle). Given an arbitrary real constant ε > 0, and a geometric graph
G in d-dimensional Euclidean space with constant dilation t, design a data structure that answers
(1 + ε)-approximate shortest path length queries in constant time.

The data structure can also be applied to solve several other problems. These include (a)
the problem of reporting approximate distance queries between vertices in a planar polygonal
domain with “rounded” obstacles, (b) query versions of closest pair problems, and (c) the efficient
computation of the approximate dilations of geometric graphs.

Survey of Related Research The design of efficient data structures for answering distance
queries for general (non-geometric) networks was considered by Thorup and Zwick [26] (unweighted
general graphs), Baswanna and Sen [4] (weighted general graphs, i.e., arbitrary metrics), and Arikati
et al. [3] and Thorup [25] (weighted planar graphs).
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For the geometric case, variants of the problem have been considered in a number of papers,
including the ones by Guibas and Hershberger [17] (simple polygons), and Chen [6], Mitchell [22],
Kapoor et al. [21], Hershberger and Suri [20], and Chen et al. [7] (polygonal domains with polygonal
obstacles). Work on the approximate version of these variants can be found in Clarkson [9], Chen [6],
Arikati et al. [3], Chen et al. [8], Har-Peled [18], Agarwal et al. [2], and Agarwal et al. [1]. The
focus of this entry are the results reported in the work of Gudmundsson et al. [13–16].

2 KEY RESULTS

The main result of this entry is the existence of approximate distance oracle data structures for
geometric networks with constant dilation (see Theorem 4 below). As preprocessing, the network
is “pruned” so that it only has a linear number of edges. The data structure consists of a series of
“cluster graphs” of increasing coarseness each of which helps answer approximate queries for pairs
of points with interpoint distances of different scales. In order to pinpoint the appropriate cluster
graph to search in for a given query, the data structure uses the bucketing tool described below.
The idea of using cluster graphs to speed up geometric algorithms was first introduced by Das
and Narasimhan [10] and later used by Gudmundsson et al. [12] to design an efficient algorithm
to compute (1 + ε)-spanners. Similar ideas were explored by Gao et al. [11] for applications in the
design of mobile networks.

Pruning If the input geometric network has a superlinear number of edges, then the preprocessing
step for the distance oracle data structure involves efficiently “pruning” the network so that it has
only a linear number of edges. The pruning may result in a small increase of the dilation of the
spanner. The following theorem was proved by Gudmundsson et al. [16].

Theorem 1. Let t > 1 and ε′ > 0 be real constants. Let S be a set of n points in Rd, and
let G = (S, E) be a t-spanner for S with m edges. There exists an algorithm to compute in
O(m+n log n) time, a (1+ε′)-spanner of G having O(n) edges and whose weight is O(wt(MST (S))).

The pruning step requires the following technical theorem proved by Gudmundsson et al. [16].

Theorem 2. Let S be a set of n points in Rd, and let c ≥ 7 be an integer constant. In O(n log n)
time, we can compute a data structure D(S) consisting of:

1. a sequence L1, L2, . . . , L` of real numbers, where ` = O(n), and

2. a sequence S1, S2, . . . , S` of subsets of S such that
∑`

i=1 |Si| = O(n),

such that the following holds. For any two distinct points p and q of S, we can compute in O(1)
time an index i with 1 ≤ i ≤ ` and two points x and y in Si such that (a) Li/nc+1 ≤ |xy| < Li,
and (b) both |px| and |qy| are less than |xy|/nc−2.

Despite its technical nature, the above theorem is of fundamental importance to this work.
In particular, it helps to deal with networks where the interpoint distances are not confined to a
polynomial range, i.e., there are pairs of points that are very close to each other and very far from
each other.

Bucketing Since the model of computation assumed here does not allow the use of floor functions,
an important component of the algorithm is a “bucketing tool” that allows (after appropriate
preprocessing) constant-time computation of a quantity referred to as BIndex, which is defined to
be the floor of the logarithm of the interpoint distance between any pair of input points.
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Theorem 3. Let S be a set of n points in Rd that are contained in the hypercube (0, nk)d, for some
positive integer constant k, and let ε be a positive real constant. We can preprocess S in O(n log n)
time into a data structure of size O(n), such that for any two points p and q of S, with |pq| ≥ 1,
we can, in constant time, compute BIndexε(p, q) = blog1+ε |pq|c.

The constant-time computation mentioned in Theorem 3 is achieved by reducing the problem
to one of answering least common ancestor queries for pairs of nodes in a tree, a problem for which
constant-time solutions were devised by Harel and Tarjan [19], Schieber and Vishkin [24], and more
recently, by Bender and Farach-Colton [5].

Main Results Using the bucketing and the pruning tools, and using the algorithms described
by Gudmundsson et al. [15], the following theorem can be proved.

Theorem 4. Let t > 1 and ε > 0 be real constants. Let S be a set of n points in Rd, and let
G = (S, E) be a t-spanner for S with m edges. The graph G can be preprocessed into a data
structure of size O(n log n) in time O(mn log n), such that for any pair of query points p, q ∈ S, we
can compute a (1 + ε)-approximation of the shortest-path distance in G between p and q in O(1)
time. Note that all the big-Oh notations hide constants that depend on d, t and ε.

Additionally, if the traditional algebraic model of computation (without indirect addressing) is
assumed, the following weaker result can be proved.

Theorem 5. Let S be a set of n points in Rd, and let G = (S, E) be a t-spanner for S, for
some real constant t > 1, having m edges. Assuming the algebraic model of computation, in
O(m log log n + n log2 n) time, we can preprocess G into a data structure of size O(n log n), such
that for any two points p and q in S, we can in O(log log n) time compute a (1 + ε)-approximation
of the shortest-path distance in G between p and q.

3 APPLICATIONS

As mentioned earlier, the data structure described above can be applied to several other problems.
The first application deals with reporting distance queries for a planar domain with polygonal
obstacles. The domain is further constrained to be t-rounded, which means that the length of the
shortest obstacle-avoiding path between any two points in the input point set is at most t times the
Euclidean distance between them. In other words, the visibility graph is required to be a t-spanner
for the input point set.

Theorem 6. Let F be a t-rounded collection of polygonal obstacles in the plane of total complexity
n, where t is a positive constant. One can preprocess F in O(n log n) time into a data structure of
size O(n log n) that can answer obstacle-avoiding (1 + ε)-approximate shortest path length queries
in time O(log n). If the query points are vertices of F , then the queries can be answered in O(1)
time.

The next application of the distance oracle data structure includes query versions of closest pair
problems, where the queries are confined to specified subset(s) of the input set.

Theorem 7. Let G = (S, E) be a geometric graph on n points and m edges, such that G is a
t-spanner for S, for some constant t > 1. One can preprocess G in time O(m+n log n) into a data
structure of size O(n log n) such that given a query subset S′ of S, a (1 + ε)-approximate closest
pair in S′ (where distances are measured in G) can be computed in time O(|S′| log |S′|).
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Theorem 8. Let G = (S, E) be a geometric graph on n points and m edges, such that G is a
t-spanner for S, for some constant t > 1. One can preprocess G in time O(m+n log n) into a data
structure of size O(n log n) such that given two disjoint query subsets X and Y of S, a (1 + ε)-
approximate bichromatic closest pair (where distances are measured in G) can be computed in time
O((|X|+ |Y |) log(|X|+ |Y |)).

The last application of the distance oracle data structure includes the efficient computation of the
approximate dilations of geometric graphs.

Theorem 9. Given a geometric graph on n vertices with m edges, and given a constant C that is
an upper bound on the dilation t of G, it is possible to compute a (1+ε)-approximation to t in time
O(m + n log n).

4 OPEN PROBLEMS

Two open problems remain unanswered.

1. Improve the space utilization of the distance oracle data structure from O(n log n) to O(n).

2. Extend the approximate distance oracle data structure to report not only the approximate
distance, but also the approximate shortest path between the given query points.

5 CROSS REFERENCES

LINK TO ENTRIES BY GUDMUNDSSON, NARASIMHAN AND SMID; LINK TO ENTRIES
ON SHORTEST PATH, IF ANY.

References

[1] P. K. Agarwal, S. Har-Peled, and M. Karia, Computing approximate shortest paths on
convex polytopes, in Proceedings of the 16th ACM Symposium on Computational Geometry,
2000, pp. 270–279.

[2] P. K. Agarwal, S. Har-Peled, M. Sharir, and K. R. Varadarajan, Approximate
shortest paths on a convex polytope in three dimensions, Journal of the ACM, 44 (1997),
pp. 567–584.

[3] S. Arikati, D. Z. Chen, L. P. Chew, G. Das, M. Smid, and C. D. Zaroliagis, Planar
spanners and approximate shortest path queries among obstacles in the plane, in Proceedings of
the 4th Annual European Symposium on Algorithms, vol. 1136 of Lecture Notes in Computer
Science, Berlin, 1996, Springer-Verlag, pp. 514–528.

[4] S. Baswana and S. Sen, Approximate distance oracles for unweighted graphs in Õ(n2) time,
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